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Abstract-A mechanical model is described for the problem of buckling of unilaterally constrained,
finite, rectangular plates. Due to the nature of the imposed constraint on the plate's lateral deflection,
w, solving for the buckling load required the solution of a nonlinear partial differential equation in
w. While the plates were modeled along the lines of classical plate theory, the nonlinearity arose
from the fact that the plates were attached to nonlinear elastic foundations exhibiting a deformation
sign dependent foree-<lisplacement relationship. This feature was introduced to model the unilateral
constraint. The influence ofdifferent boundary conditions, material orthotropy and transverse load
distributions was investigated. For each case, the weak form of the governing differential equation
was solved via the Galerkin's method. Investigations of the buckling loads of rectangular plates
attached to such foundations and subjected to a uniform inplane stress field showed the validity of
this approach for the cases investigated and compared to some previous exact results reported in
the literature.
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generalized displacement (Galerkin's) coefficients (also denoted A)
generalized displacement coefficients at A= 0 and Q(x,y) =!' 0
plate bending stiffnesses
D;)D 1,

foundation force
pre-buckling inplane loads
q(x,y)b4/D 11 h
strain energy density of the elastic foundation
plate's dimension in the x-direction
plate's dimension in the y-direction
displacement function that characterizes the foundation model
plate's thickness
stiffness parameter
transverse load
length coordinate e [0, a]
X/be[O,~]

width coordinate e [0, bl
y/be[O, I]
plate out-of-plane deformation
w/h
total potential energy
fib 2/D 11 h2

kinematically admissible displacement functions in x and y
kb 4/n 4D11

foundation attachment coefficient >0
NdN11

N 22/N II

Nllb2/n2DII (inplane load parameter)
critical value of A (buckling load parameter)
lower bound on A.:r
upper bound on Aur

alb (plate's aspect ratio)
kinematically admissible displacement functions in x
kinematically admissible displacement functions in y.

INTRODUCTION

In this paper we consider a mechanical model and an appropriate solution method for the
critical loading conditions of a finite, rectangular and linear elastic plate that is unilaterally
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Fig. I. Thin elastic plate constrained by a rigid surface and under the action of an applied inplane
uniform load.

constrained by the presence of a rigid surface parallel to the plate's undeformed middle
plane as shown in Fig. I. The distance between the rigid surface and the plate's middle
plane is taken to be half the plate's thickness, implying that a gap does not exist. The plate
is subjected to transverse distributed loading as well as a uniform inplane stress field. The
plate is modeled along the lines of classical plate theory employing the Kirchhoff-Love
hypothesis.

The model description in the preceding paragraph is characteristic of a variety of
practical situations. For example, consider the problem of near-surface delamination (dis
bond) buckling in laminated composite plates. Due to the out-of-plane thickness ratio of
the delamination (thin plate) to that of the sublaminate (parent substrate), the sublaminate
essentially acts like a rigid surface constraining the plate's out-of-plane deformations to be
of one sign. This constraint is usually avoided indirectly by either modeling the thin plate
as a wide column or as an axisymmetric circular plate or annulus (Chai et al., 1981 ; Bottega
and Maewal, 1983; Sallam and Simitses, 1985; Bruno and Grimaldi, 1990; Barbero and
Reddy, 1991), which are essentially one-dimensional models. However, it is to be noted
that except for certain inner/outer radii ratios, annuli can exhibit a nonaxisymmetric
behavior (Majumdar, 1971; Fu and Waas, 1992). By resorting to one-dimensional models,
the governing partial differential equations are reduced to ordinary differential equations.
This implies that the eigenmode corresponding to the lowest eigenvalue is of one sign,
hence, no contact occurs (within the boundaries) between the delamination and the sub
laminate. An analysis of the one-dimensional case (Chai et al., 1981) where the sublaminate
has some finite bending rigidity, reveals that certain buckling configurations exist in which
contact conditions occur. The axisymmetric upheaval buckling ofa heavy plate in unilateral
contact with a rigid subgrade was presented in Hobbs (1990).

One common simplification when addressing these types of problems is the assumption
that the medium, being a beam or a plate, is infinite. The buckling of a unilaterally
constrained infinite beam (thin strip) was addressed by many investigators (Allan, 1968;
Anderson, 1972; Yun and Kyriakides, 1983; Wang, 1984a,b; Hobbs, 1985; Roorda, 1988;
Plaut and Mroz, 1992), and it was shown that such a system is completely imperfection
sensitive, with theoretically infinite buckling load in the absence of imperfections or weight
lessness. An analysis to extend the classic variational theory for eigenvalue problems so as
to define the Euler critical load of a unilaterally constrained beam is presented in Villaggio
(1979). The variational formulation also provided a method of bounding the buckling load
by comparison, and a few important theorems and remarks were stated. Using an elastica
approach, Soong and Choi (1986) derived equations for continuous contact between a
beam and its boundary, as well as multiple discrete point contacts. They presented examples
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in which the elastica curvature assumes values which are less than the curvature of the
restraining boundary, thus resulting in line contact. A finite element solution was used by
Stein and Wriggers (1984) with an updated Lagrangean formulation to investigate the
stability of rods with unilateral constraints. These authors showed good agreement in
comparing their solutions to those available in the literature.

Similar issues relating to the behavior of unilaterally constrained plates have been
considered by other researchers in different contexts. Motivated by a problem that arises
in magnetic tape recording, Benson (1991) used classical plate theory to study plate tenting
with one-sided constraint using an energy minimization formulation. A more indepth study
on unilateral boundary value problems as related to the nonlinear theory of plates was
reported in Naumann (1975, 1977). This author presents a variational formulation along
with an existence theorem and a uniqueness result for a variational solution for thin plates
under normal load. The existence of equilibrium states of such plates is also studied.

The buckling behavior of an infinitely long, simply-supported isotropic plate is pre
sented in Seide (1958). Attaching the plate to a tensionless foundation and subjecting it to
a far field uniaxial compressive load, he presented results for the buckling load as well as
the buckling wave length. Using a limiting process, the solution for a unilaterally constrained
simply-supported infinite plate was recovered from the exact solutions of the governing
differential equations. Such a solution showed a 33% increase in the buckling load when
the plate was unilaterally constrained. Using a similar formulation, Shahwan and Waas
(1991), obtained similar results for specially orthotropic plates as well as approximate
results for plates that have clamped-free boundary conditions on their unloaded edges.
They reported values for the % increase in the buckling load for four types of specially
orthotropic plates.

One of the earliest works that addressed the issue of unilateral constraints as related
to the problem of two-dimensional delamination buckling was reported by Chai and
Babcock (1985). Modeling the delamination as a thin elliptic plate, and based on a rather
limited number of assumed admissible Rayleigh-Ritz displacement terms, they studied the
dependence of overlap conditions on ellipse aspect ratio and load level. More recently, the
buckling and post-buckling of elliptical delaminations was investigated by Chai (1990a,b),
who carried out a simplified contact analysis by limiting the contact regions to isolated
points. Although such an assumption resulted in an accuracy within ±30%, it would not
hold in cases where the geometry, boundary conditions and loading are of a more com
plicated nature so that surface rather than point contact would dominate the response.

The buckling of thin plates using von Karman plate theory in a variational inequality
formulation was presented in Do (1976, 1977) and Kubrusly and Oden (1981). Using a
variational principle with penalty in a finite element formulation, Ohtake et ai. (1980a,b)
provided a more convenient basis for computational methods by introducing a penalty
term and adding it to the potential energy. In effect, this term is identically zero whenever
the plate's deformation w is not in contact with the rigid constraint, and greater than zero
otherwise.

Issues pertaining to the equilibrium and stability ofdiscrete one-way structural systems
were dealt with in a general manner by Burgess (197Ia). This author also presented an
analysis that showed that the discrete method converges to the continuum solution by
studying a radially constrained imperfect ring (Burgess, 197Ib). In these works the notion
of a critical state is classified and the evaluation of the buckling load was carried out in the
context of a postbuckling analysis.

In the present work, the problem of unilateral constraint is modeled by introducing a
nonlinear elastic foundation that influences the plate's out-of-plane deformation as shown
in Fig. 2. This is a feature of the modeling that is introduced and not necessarily of the
problem at hand. Indeed, from this point of view, the present work is similar in spirit to
the approach adopted in Seide (1958).

PROBLEM FORMULATION

In order to account for the physical constraint imposed on the plate's buckling dis
placements, a nonlinear elastic foundation model that exhibits a deformation sign dependent
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Fig. 2. Modeling the rigid surface constraint as a nonlinear elastic foundation (springs).

force-displacement relationship was implemented. Such types of nonlinearities present
analytical difficulties in that an exact closed-form solution cannot be easily obtained if at
all. As such, an approximate method ofsolution must be followed to formulate the equations
governing the plate's response. From the expression of the total potential energy (1), one
can operate either on its functional form directly (e.g. the Rayleigh-Ritz method), or on
its first variation form (e.g. the Galerkin method):

t
ibia~ A 2 A A 2 A An = - [D11w ·.+2D I2 W"W ··+D22W.·+4(D I6W.~+D26W ··)w··

2 ,xx ,xx ,yy yy ,XA ,yy ,xy
o 0

-f f q(i,y)wdidy+f fWrdXdY. (1)

The elastic foundation's strain energy density functional, Wr, is defined as,

Wr = fk'P(w) dw. (2)

In the case of a linear elastic foundation, 'P(w) = W, and hence Wr = !kw2, where k is the
linear foundation stiffness. Nondimensionalizing (1) will result in the following expression
for the total potential energy:

-ff Q(x,y)w dx dy+ff om4
( f'P(w) dW) dx dy. (3)
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Calculating the first variation of n and applying the divergence theorem yields the
following variational equation:

<5n = Efoe [w,xxxx +2(D 12 +2D66 )W,xxyy +D 22 W,yyyy +4(D 16W,xxxy +D 26W,xyyy)

+ ,,\,1[2 (W,xx +2'712 W,xy + '722W,yy) + (X1[
4'P(w) - Q(x,y)] <5w dx dy

-E(Mxx<5w,x+ M xy<5w,y- Vx<5W);::::bdy-f (Mxy<5w,x+ M yy<5w,y- Vy<5w)~::::~dx, (4)

where M xx , M yy , M xy , Vx and Vy are the nondimensional moments and shear forces at the
plate's boundary and in terms of w(x, y) are given in the following equations:

M xx = -(W,xx+ D 12W,yy+2D I6 W,xy),

M yy = -(D12w,xx+D22W,yy+2D26W,xy),

M xy = -(D16W,xx+D26W,yy+2D66W,xy),

Vx = - [w,xxx+3D16W,xxy+ (D 12 +2D66 )W,xyy

+ D 26W,yyy+ ,,\,1[2 (w,x + '712 W,y)] ,

Vy = -[DI6W,xxx+(D12+2D66)W,xxy

+ 3D26W,xyy +D 22 W,yyy + ,,\,1[2('712W,x + '722 W,y)]. (5)

Investigations of equilibrium states requires, the necessary and sufficient condition that the
total potential energy n be stationary, hence, the vanishing of its first variation,

<5n = o. (6)

From (4), (5) and (6) the governing nonlinear differential equation can be extracted along
with the boundary conditions. A closed-form solution of the differential equation is highly
dependent on the form of'll(w). While for nonlinear'll(w) such a solution is near impossible,
it is easily obtainable if'P(w) is linear in wand if the boundary conditions are of a certain
type and combination. Hence, for nonlinear 'P(w), one has to resort to approximate
methods such as the finite element method, the Rayleigh-Ritz method, or Galerkin's
method, to mention a few. In this study it was decided to employ Galerkin's method, and
in order to carry out the solution procedure, kinematically admissible global displacement
functions must be assumed. It is important to note that although the plate is unilaterally
constrained, such a constraint does not play any role in choosing these functions and as
mentioned earlier, this constraint condition will be accounted for indirectly via the non
linearity of the elastic foundation model. Further, the out-of-plane displacement field W can
be assumed to be of a separable form where shape functions in x are multiplied by those
in y. These functions can be chosen to be the buckling and/or free vibrational eigenmodes
of beams and/or plates having the same kinematic boundary conditions. In the forthcoming
analysis, the out-of-plane displacement functions w(x,y) were chosen to have the following
form:

M N

w(x,y) = L L Aij<l>ij(x,y),
i= 1 j= 1

where <l>ij(x,y) has the following separable form:

(7)
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(8)

ljJ;(x) and «Jj(Y) must satisfy their corresponding plate's kinematic boundary conditions.
The first variation ofw(x,Y) with respect to the generalized displacement coefficients Aij is,

M N

Jw(x,Y) = L L JAij<l>ij(x,y).
i~ I j~ I

(9)

Substituting (9) in (4) and in conjunction with the statement of stationary total potential
energy (6) one arrives at the following set of M x N algebraic equations in the M x N
unknowns Aij :

(10)

For a prescribed 'P(w), one can determine the buckling load parameter Acr as well as the
generalized displacements Aij using an incremental load approach. The solution algorithm
increments the inplane load parameter Aand monitors the determinant of the incremental
stiffness matrix. Acr was obtained when the incremental stiffness matrix became singular (or
near singular). Such an approach is used frequently in the analysis of nonlinear problems.

The type of foundation model needed to incorporate the physics of unilaterally con
strained plates should exhibit a foree-displacement relationship that is deformation sign
dependent, hence, the foundation was modeled as extensional springs having such a relation
ship. Such models have been considered by many investigators in the treatment of beams
and plates resting on nonlinear foundations (Tsai and Westmann, 1967; Farshad and
Shahinpoor, 1972; Celep, 1988). In these studies, the sgn, Dirac delta as well as Heaviside step
functions were used to describe the bimodulus nature of the elastic foundation (bimodulus
in the sense that compression stiffness is different than that for tension). In this study, a
model that utilizes the switching property of the tanh function was used. The force
displacement relationship for this model is given below as,

where

F = IX'P(W),

'P(w) = w[!(l-tanh (pw))] ,

(11)

(12)

IX is a nondimensional stiffness parameter, w is the normalized deformation, p is a spring
(foundation) attachment coefficient that is >0. The foundation attachment can be con
trolled by changing the value of the parameter p. Large values of p imply less attachment
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Fig. 3. Displacement function that characterizes the foundation model 'I'(w) as a function of w for
different values of p.

as shown in Fig. 3. Theoretically, f3 = 0Ci implies that the foundation is fully unattached
(tensionless), while f3 = 0 implies the foundation is fully attached (note that if f3 = 0 the 1
factor in (12) should be replaced by 1 in order to recover the linear case where 'P = w).
Furthermore, while foundation stiffness can be increased to larger values by increasing (l(,

increasing f3 will result in a decrease in the ratio of the tension/compression stiffnesses.
It is worthwhile noting that although the nonlinearity in the physical problem is

geometric, arising from the constraints imposed on the plate's behavior, the nonlinearity in
the governing equations arises from the elastic foundation's constitutive model. Notice that
this is a feature of the mechanical model that is employed in the present work.

The type ofnonlinearity in the physical problem invalidates any linearization procedure
of the governing equations about the trivial state. As such, the fully nonlinear equations
must be solved which introduces complications that are associated with the foundation's
force-displacement relationships (11) and (12) where linearization of tanh (f3w) for large 13
does not reflect the intended physical situation. The inability to linearize the governing
equations without substantially changing the physics of the problem is a distinguishing
feature of this class of problems.

RESULTS AND DISCUSSION

While generic buckling curves for uniaxially loaded rectangular plates are available in
the literature (Gerard and Becker, 1957; Brunelle and Oyibo, 1983), such results are non
existent for unilaterally constrained plates. Hence, in this study the effort was concentrated
on trying to generate such curves for plates having different boundary conditions and
subjected to a uniaxial stress field. For uniaxial loading, '112 = '122 = O. In problems of the
type presented here, it is often easier to obtain the buckling loads by treating a response
problem and determining the value of the inplane load parameter (A.) corresponding to a
rapid growth in the response. More specifically, the notion of a rapid growth in the context
of the numerical solution that we have obtained is clearly discussed later on. Thus, values
of buckling load presented here were obtained, and the term buckling load is used, in this
context.

In carrying out the solution process, the value of 13 in (12) posed a computational
drawback. Although large values for (l( as well as f3 are required in simulating the presence
of the rigid surface, they cannot be chosen arbitrarily large. It was observed that while
(l( = 100 ("high stiffness" foundation) yields adequate and physically admissible results
independent of w, the value of 13 was dependent on w so as to maintain the product pw as
large as possible for all values of w. Further, assigning a large constant value of 13, led, in
some cases, to numerical difficulties that were encountered in the incremental method
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Fig. 4. The influence ofthe foundation (springs) attachment coefficient fJ on the value of the buckling
load parameter A..:r for an isotropic plate with "cess" boundary conditions.

algorithm. In these cases, a physically inadmissible result such as plate penetration into the
foundation was found to exist. An improvement on this foundation model (12) that elim
inates such dependency can be achieved by casting (12) in the following form:

(13)

Using the above form of 'I'(w), and after investigating a wide range of problems, it was
found that f3 = 10 is an adequate value for an attachment coefficient representing the
unattached situation. Figure 4 demonstrates the dependence of Acr on f3 as a function of ~

for plates having clamped and simply-supported boundary conditions along their loaded
and unloaded edges, respectively. Curves for f3 > 10 are indistinguishable from the f3 = 10
curve.

A simplification to the solution algorithm rests in the fact that, for a given case where
(X and f3 are >0, Acr is bounded from above and below. The lower bound AI corresponds to
Acr when (X = 0, while the upper bound Au corresponds to Acr when f3 = O. Such bounds were
used as guides in the incremental method and it was noticed that, in general, for unilaterally
constrained plates, Acr is closer to AI than Au indicating that the rigid surface constraint does
not increase the buckling load significantly (Seide, 1958; Shahwan and Waas, 1991). For
an isotropic, simply-supported (along the unloaded edges) infinite plate, such an increase
was found to be 33%.

By using Galerkin's method the governing nonlinear differential equation was reduced
to a set of M x N nonlinear algebraic equations (10) whose solution was carried out
iteratively using the Levenberg-Marquardt algorithm (denoted as LMP) as modified by
Powell (1970). For a system of nonlinear algebraic equations f(A) = 0 the algorithm is
given by

(14)

where Jk is the Jacobian at the kth iteration given by

(15)

and Ak is the current, known, approximate value of the vector of unknowns A and Pk is a
scalar that is selected based on a methodology given in Powell (1970). Although this



Fig. 5. Response curves for two different transverse loading Q(x,y) distributions, for an isotropic
"ccss" plate of aspect ratio e= 3.

algorithm was the main algorithm used in obtaining solutions for A, for some cases and
for A near Acro the algorithm didn't converge and Newton's method was temporarily
employed. Such a situation did not occur frequently. In those few instances, we traced the
reason for this lack of convergence to be associated with the evaluation of the Jacobian. In
Newton's method, the Jacobian at the kth iteration (Jk) is evaluated with a pre-assigned
step size, while, in the LMP method, the Jk is updated automatically with step size that
depends on Ak as well as the change in the Jacobian from the previous two iterations.

Dependency of Acr on the transverse load Q(x, y)

In the absence of Q(x,y) and since the trivial solution (w = 0) is an admissible solution
for all values of A, the solution of the governing equations constitutes the determination of
the eigenvalues Ace and their corresponding eigenmodes. But due to the nonlinearity of these
equations, such a system falls into the category of a nonlinear eigenvalue problem. As a
simplification to the solution process a transverse load Q(x,y) was added which converts
the problem from being a nonlinear eigenvalue problem to a nonlinear response problem.
In order to establish that the results for Ace are not significantly influenced by the magnitude
and distribution of Q(x,y), different cases were investigated where the sign and magnitude
as well as the functional distribution throughout the plate were varied. Although the
"response curves" (curves representing A vs normalized magnitude of the generalized
displacements vector II A II / II AoII) were not significantly influenced by the magnitude of
Q(x,y), they were dependent on its sign distribution. However, the value of A at which the
plate response appeared to increase without bound (approaching buckling) was independent
of Q(x,y) as expected. If Q(x,y) = c, where c is a constant that is <0 (i.e. Q is pushing the
plate against the foundation), the value of Ace was equal to 00. If, on the other hand, c > 0
(i.e. Q is pulling the plate away from the foundation), the value of Ace was finite yielding
valid results. However, the latter situation has an interesting feature that can be seen in
Fig. 5. In this figure, the response curves for a plate that is clamped along the loaded edges
and simply supported otherwise is under the action of two types of transverse loads. One
curve represents the case where c > 0 while the other represents the case where Q(x,y) is a
symmetric distribution (symmetry with respect to the center line x = e/2). In the former, a
decrease and then a sudden increase in the slope at some value of A< Ace is observed. This
can be attributed to the plate "touching" the foundation and immediately experiencing
additional stiffness due to the foundation. On the other hand, in the latter case where the
transverse load has negative as well as positive distributions, "touching" is already present,
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Fig. 6. Buckling load parameter A.." as a function of the plate's aspect ratio ~ for isotropic plates
with different boundary conditions on their loaded and unloaded edges.

prior to the application of the axial load. Hence, this sudden slope increase is not strongly
present. Further, although such difference between these two curves is strongly present for
intennediate values of A, it vanishes at the early stages of loading (A) increments as well as
when Aapproaches the eigenvalue (Acr). From this figure, it is also seen that as the magnitude
of the nonnalized generalized displacement vector II AII / II AoII tends to large values (exceed
ing 10), the slope of the response curves tends to zero. In order to detennine Ac.. we plotted
several response curves for each case, and in every case we found all the response curves to
be within I% of each other when II AII / II AoII was, at most, approximately 20. The load
corresponding to this limit was chosen as Acr • Clearly, for some plates this limit was reached
much earlier (1IAIi/IIAoll approximately 10). It is worthwhile pointing out that in the
presence of Q(x, y), the obtained Acr will always be an underestimate of the exact Acr value
(eigenvalue) that would have been obtained by setting Q(x,y) = 0, provided a sufficient
number of Galerkin tenns are used. Although this difference should approach 0 as Q(x,y)
approaches 0, its value was kept to a minimum (i.e. Q(x,y) was never set to 0).

Dependency of Acr on the plate's aspect ratio ~

Figures 6 and 7 show the dependency of Acr on the plate's aspect ratio ~ for different
types of boundary conditions on the loaded and unloaded edges as well as for different
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Fig. 7. Buckling load parameter ).0' as a function of the plate's aspect ratio ~ for two types of
orthotropic plates (A and B) with different boundary conditions on their loaded and unloaded

edges.
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Table 1. Limiting values of the buckling load parameter (}.cr) as ~-+
00 for uniaxially loaded isotropic plates

Boundary conditionst

85

Loaded edgest

Unloaded edges§ cc cs

cc or ss

ss cf

Acr 9.30 7.22 5.2511 1.75

t c = clamped, f = free, s = simple.
t Loaded edges are in the short (y)-direction.
§Unloaded edges are in the long (x)-direction.
II Exact value = 5.33.

types of materials. As expected, the dependence of Acr on ediminished for large values of
eand beyond a certain value of e, the value of Acr becomes independent of the boundary
conditions on the loaded edges and depends only on the boundary conditions on the
unloaded edges. The prediction of this independence of Acr at large eadded confidence to
the numerical procedures adopted in the present work. Table I summarizes the limiting
values of Acr as the plate's aspect ratio e-+ 00 for the case of an isotropic material.

An interesting feature of the buckling behavior of this problem is its symmetry. For a
unilaterally constrained plate having homogeneous boundary conditions, the out-of-plane
buckling deformation field w(x,y) is a symmetric function with respect to the center line
x = e/2. This feature aids in the selection of the admissible displacement functions in (8)
such that only the symmetric ones are retained and all others discarded due to their vanishing
contribution to the governing equations.

Since the formulation covers material models other than isotropic, example problems
for two types of specially orthotropic materials (designated A and B) were also studied.
The properties of these materials are tabulated in Table 2. The results obtained via the
present formulation for unilateral buckling ofplates made ofthese materials are summarized
in Fig. 7. For large aspect ratios the results for buckling loads are seen to converge to
certain fixed values and when compared to previous results (Shahwan and Waas, 1991),
are found to be in very good agreement.

In Fig. 8, we show typical plots for the evolution of the buckle displacements as a
function of applied load for an isotropic plate of aspect ratio three. In the case, the plate
was subjected to a uniformly distributed positive transverse pressure loading. Thus, at zero
axial load, the plate deformation is the linear response to the pressure load.

CONCLUSIONS

The problem of buckling of unilaterally constrained, finite, rectangular plates was
investigated. The plates were modeled along the lines of classical plate theory employing
the Kirchhoff-Love hypothesis. The presence of a unilateral constraint was accounted for
through the use of a nonlinear elastic foundation model that exhibits a deformation sign
dependent force-displacement relation. Using Galerkin's method, the resulting system
of governing nonlinear algebraic equations was solved iteratively. Different boundary
conditions were considered and the results for some boundary conditions were compared
and shown to be in good agreement with "exact" results available in the literature (Seide,
1958; Shahwan and Waas, 1991). The effect of the presence of a transvere load Q was
investigated and it was found that the plate's load-displacement (A - (II A II I /I AoI/)) curve

Table 2. Normalized bending properties for the three types of materials used
in this study

Material

Isotropic
Orthotropic (A)
Orthotropic (B)

0.33
0.26
0.67

0.00
0.00
0.00

1.00
0.38
2.61

0.00
0.00
0.00

0.33
0.27
0.70
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Fig. 8. Deformation of a "cess" isotropic plate of aspect ratio ~ = 3, under a uniform positive
transverse loading and at different levels of inplane loading. The deformations are exaggerated for

clarity.

can depend on the sign and distribution of Q, while the buckling load parameter (A.cr) was
found to be independent of Q. Different material orthotropy was also investigated and
results for the buckling load were presented and were found to compare favorably with
results reported previously. The present study has demonstrated the validity of using such
foundation models in the buckling analysis of unilaterally constrained rectangular plates.
Since the formulation is quite general, extensions to study the unilaterally constrained
buckling problem of thin film delaminations of arbitrary planform shape in compressively
loaded laminates is currently being pursued. Obtaining a solution to this latter problem
was our initial motivation for developing the methodology presented here.
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